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ON THE MOTION OF AN ELLIPSOID ON A ROUGH SURFACE WITH SLIPPAGE* 

A.P. MAFUCBEV 

Method of averaging is used to investigate the motion with slippage of a homogene- 
ous, triaxial and almost spherical ellipsoid on a fixed horizontal plane in the 
presence of a small amount of dry friction. The first approximation equations are 
very complicated and their full integration is not performed. Two first integrals 
of the averaged equations are found, general geometrical properties of the motion 
investigated and simplest particular solutions of the averaged equations considered. 
The qualitative and quantitative investigation of the tendency of the ellipsoid to 

rotate about its largest, vertically positioned axis, is carried out. Results of 
the analysis of the motion of the ellipsoid in the presence of a small amountofdry 
friction are also formulated. 

A particular case of the motion of a heavy homogeneous triaxial ellipsoid on a fixed hori- 
zontal plane was studied in /l/, where it was assumed that slippage was absent, and the point 
of contact between the ellipsoid and the plane described on the surface of the ellipsoid one 
of its principal cross sections. In /2,3/ the author investigated a motion of an almost 
spherical ellipsoid. Periodic motions without slippage are studied, generated by the station- 
ary motions of a homogeneous sphere and an averaging method is used to study a general case 
of the motion. In the case of a perfectly smooth plane, methods of Hamiltonian mechanics are 
used to establish the character of the motion of the ellipsoid over an infinitely long period 
of time. 

1. Let us write the equations necessary for solution of the problem of motion with slip- 

page, of an arbitrary, convex, heavy solid on a fixed rough horizontal plane. Let OXYZ be 
a fixed coordinate system with the origin at some point on the plane, and a vertical 02 axis. 
We denote the unit vector of the vertical by II which is a unit vector of the outward normal 
to the surface of the body, constructed at the point P of contact between the body and the 
plane. We attach to the solid the Cxyz coordinate system with the origin at its center of 
gravity C and the axes directed along the principal central axes of inertia of the body. The 
orientation of the body relative to the fixed coordinate system is determined with help of 
the matrix A of direction cosines 

(1.11 

In the Cxyz coordinate system the vector CP has components x, y, and z. We assume that the 

equation of the surface surrounding the body has the form 

cp (5, YV z) = 0 (1.2) 

n = grad cpll grad cp 1 , n’ = -(a~, a32, a.& 

where a prime denotes transposition. Let v and v, denote the velocity vectors of the points 

p and C of the body, and v~,vy,vr and X,‘,Ye’, Z,’ their components in the fixed coordinate 

system. Then 

v=v,+AwxCF' (1.4) 

where ca is the instantaneous angular velocity vector of the body, given in the Cry2 coordin- 

ate system by its components p, q, and r. Let Rx, RY, RZ be the components of the reaction 

R of the plane in the OXYz coordinate system. Then we have, in the case of dry friction, 

Rx=-fRZcos0, Rye-fRzsinO; vx=vcos& vr=vsine (1.5) 

where f is the coefficient of friction and is a constant, and 0 denote the angle between the 
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velocity vector v of the point of contact and the OX axis of the fixed coordinate system. 
We assume that v#O, i.e., the motion is carried out with slippage. The coupling equation 

expressing the fact that the component nz of velocity at the point of contact is zero, can be 
written with help of equations (l.l), (1.3) and (1.4) in the form of the following kinematic 

relation: 

Z,' + "Sl (qz - ry) + a32 (TX - P4 + a33 (PY - s4 = cl (1.6) 

The theorems on the change of angular momentum and kinematic momentum yield two vector equa- 
tions 

m~,‘=mgn+R, G’+o x G=M; M=CP x R (1.7) 

where m denotes the mass of the body, g is acceleration of free fall and G is kinetic moment 
of the body relative to the center of gravity. In the Cxyz system we have G' = (Ap,Bg,Cr) 

where A, B, and C are the principal central moments of inertia of the body. We denote by M 

in (1.7) the moment of reaction of the plane relative to the center of gravity, and write (1.7) 
in the scalar form in the following equations 

mX,” = --fRZ cos 8, my,” = -fRZ sin 0, mZ," = Rr - mg (1.8) 

Ap’ + (C - B) qr = M, {pqr, xyzz, ABC} (1.9) 

M, = f(a,,y - a,~) + f (uz2z - as3 y)‘sin 0 + f bw - al3 Y) cos 01 RZ (1.10) 

{XYZ, ailaiZai3 (i = 19 27 3)) 

Another two equations not appearing in (1.9) and (1.101 but are obtained from them by simulta- 
neous cyclic permutation of the indices shown within the curly brackets. 

Let us also write the kinematic Poisson equations 

ail ’ = ui,r - ui,q, aim’ = ui# - ud, ui3’ = uilQ - Utfl 
(1.11) 

(i = 1, 2, 3) 

The equations (1.2)- (1.6), (1.8)- (1.11) form a closed system of equations describing the 
problem of motion with slippage of an arbitrary convex, heavy solid on a fixed rough surface, 
in the presence of dry friction. 

2. Let a moving body represent a homogeneous ellipsoid the surface of which is given in 
the Cxyz system by the equation 

cp cs xala2 + y2/b2 + z21ce - i (2.1) 

In the case of a = b = c we obtain the well studied /4-6/ problem of motion with friction 
of a homogeneous sphere on a horizontal plane (billiard ball). If at the initial instant the 
instantaneous angular velocity vector cu is perpendicular to the velocity vector v, of the 
center of the sphere, thenthelatter moves along a straight line, otherwise it moves along a 
parabola. The slippage ceases at the instant t- 2vol(7fg), where v,, is the initial velocity 
of the point of contact. Beginning from this moment, the motion will consist of rolling with 
spinning. 

Let the ellipsoid differ little from a sphere of radius 1, and let the friction coeffic- 
ient f be small. We use the quantity max { (a - b 1 /I, 1 b - c 1 /I, 1 c - a ( / 1, f) as the small 
parameter E. When e=O, we have the problem of motion of asphereona smooth horizontal 
plane; the sphere center moves uniformly and rectilinearly and the sphere rotates uniformly 
about a fixed direction in the fixed coordinate system. Assuming that the above motion is a 
generating motion, we study the motion of the ellipsoid at Oce<l by asymptotic methods. 
To do this, we transform the equations of Sect.1 to the form suitable for the application of 
the averaging method /7/. 

From (2.1), (1.3) and (1.6) it follows that Z;’ is a quantity of first order of small- 
ness in E, therefore, according to the third equation of (1.81, the normal reaction of the 
plane RZ isequalto the weight of the ellipsoid with an error of the order of e 
terms of the order of E?, 

Neglecting 
we can write the first two equations of (1.8) in the form 

X," = -fg cos 6, Y," = -fg sin 9 

Performing the variable change 

x = as’, y = by’, z = cz’ 

and remembering that for a homogeneous ellipsoid 

A =m(bZ+ c2)/5, B = m (c* f u*)/5, C = m (a2 + b2)/5 

(2.2) 

(2.3) 

(2.4) 
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we find from (2.1),(1.3), (1.10) that to write the equations (1.9) with the accuracy of up to 
the terms of order t? it is sufficient to put in their right hand parts 

M,= 5g(B - C) y'z'll + fmgl (azl cos f3 - a11 sin 0) (2.51 
{zyz, z'y'z', ABC, a~,qpai, (i = 1, 211 

The equation of the surface of the ellipsoid (2.1) will become, in the variables x’, y’,z’, an 
equation of a sphere 

J/s+ y'2 + z'l = 1 
(2.6) 

From (1.11) we obtain (with i = 3) with help of (1.3) and (2.3), the following equations for 
the variables x', y', 7,' in the first approximation in e: 

5 '. = y+ - z’q + g,, y” = z’p - x’r + g,, 2 ‘. = x’q - Y’P + 83 (2.7) 

g, = 2 (c - h) x’y’z’pll + (a - c) (2x'% - 1) z’qll + (b - a) (2~‘~ - 1) y’rll 

{g,g,g,, abc, z’y’z’, pqr} 

and the equations are dependent by virtue of (2.6). From relations rx = v cos 0, vY = v sin 9 
we have 6'= (ur'Co9 6 - vx’ sin e)h, U’ = uy’sin e + vx’ CDS 8. Substituting here the derivatives 
vx', VY’ obtained by differentiating the kinematic relation (1.4) and using the equations 
(Lll), (2.2), (2.3), (2.7) as well as the equations connecting the firection cosines aij, we ob- 
tain the following differential equations for 6 and v in the first approximation in 8: 

e* = (@ COB e + Y sin e)iv, V’ - -‘&fg + (@ sin e - Y cos 8) (2.8) 
Q, =n+ cp¶ + (PST y = a+ 4%. +9s 

'PI = (a- c) ial* (pr + 5t?X'Z'lO - .w~'!I hp + a,,q + 

a,d) + 2a,,q (s’p - z’r) - 2q’ (a,,~’ - ass z’)l 
$1 = (0 - C) [a, (pr + 5gz’z’lO + k’z’q (ad + ad + 

aasr) - 2ad WP - z’r) + 2q’ (a,,.~’ - aI~‘)l 
{qwwsl ~&r~a, ah pqr, z'Y'z', aflat,afs (i = 1, 2)) 

Following /2,3/ we replace the variables x',Y',z' by P, 5, y using the following formulas: 

I' 

II I 
sinfi cosacosj3 sinacosfi psiny 

:I = 
-cosfi cosasin$ sinasinfl 

-sina 

sin a = -&T&o, 

cosa II I 
PCOSY 

5 

cos a = r/./o, sin p = q/f=7 

cosB= &f-F7 

(2.9) 

The variables p and c are connected with each other by the relation 

P2 + 52 = 1 (2.10) 

When E = Oy’= o and the quantities P and c are constant, with p denoting the distance from 
the center of the ellipsoid (sphere) along the straight line passing through the point of con- 
tact in the direction parallel to the vector o, then I< 1 describes the distance from the 
center of the ellipsoid (sphere) along a plane perpendicular to 0 and passing through the 
point of contact. 

We carry out a variables change in (1.11) using (2.9) in which we replace I', y', Z' by 

ail, aiz, al,(i = I, 2, 3) respectivel?, and p, 5, y by pi, El, yi* The quantities &, &A, ta are Co- 
sines of the angles between the vector o and the axes OX,OY,OZ of the fixed coordinate 

system. We have the following identities: 

pi2 + &' = 1 (2.11) 

In the first approximation in e the variables f&(i = 1,&s) satisfy the following differen- 

tial equations: 

5’ = (x’p’ + y’q’ + z’r’)/o - (pp’ + qq’ + rr’)/o* + 

(pg, + qg, + rg,)lo 

(2.12) 

tie = (atIp' + ai,q' + aifl*)/o - (pp’ + qq’ + rr3/02 
(2.13) 

The quantities p’. q’, r’ appearing here must be obtained from equations (l-9), with the right 
hand sides given by (2.5). Neglecting the terms of order e and higher, we also obtain 

yi' = y' = 0 (2.14) 
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Let us replace fl, 5% by variables al,c+ according to the formulas 

a, = & cos 0 + & sin 0, a, = ---GE sin 6 + t COS 0 (2.15) 

The quantity a, is a cosine of the angle between the vectors @ and v, while a,is a cosine 
between o and the vector perpendicular to v and lying in the horizontal plane, with the smal- 
ler angle of rotation from v to this vector counted in the anticlockwise direction. From 
(2.15) and (2.13) we obtain for ar, a, the following equations: 

al' = I(%%p + esq’ + +~r’f sin fJ -i- @SIP’ + %q’ i- (2.16) 
a&) cos 01/o - (pp’ -I- 44’ i- rr’)a,id + Va, 

a ; = C&p + a,,q’ + ad*) cos 0 - (adP + 42 9. -i- 
akgr’) sin 9110 - (pp' + qq’ + rr*)a,ld - @‘aI 

Equations (1.9) (with the right-hand sides (2.5)), (2.2), (24, (2.12)-(2.14) and (2.16) re- 
present a system written in a form suitable for use with the method of averaging. In the 
equations (2.12), (2.13) (2.16)p', q’. r’ are function obtained from (1.9), z’, y’,z’,ail are assumed 
to be given in terms of ~,&y,~~,c~, yt, p, q,r according to the formulas (2.9) defining the 
variable change, and 8'in (2.16) represents the right-hand side of the first equation of (2.8). 
The variables X0*, Yd, p, q, r, T;, 6, 8, Y in the resulting system of equations are slow, while 
y, y1 are fast. Let us average the right-hand sides of the equations for the slow variables, 
over the fast variables, Taking also into account (2.10) and (2.11) and the relations 
PPi COf (v - vi) + & = 0 (i = &2) valid for the unperturbed (at E = 0) motion, we obtain the 
following averages system of equations: 

X," = -jg cos 8, Y;' = -fgsin 0 (2.17) 

dp' + II + 5g (3p - 1)/(20zl)l fC - BI qr = f wl ado (2.18) 

{ABC, pqr) 

%EF al'== -+$-alaz+- 210~ 
(2.19) 

(2.20) 

The averaged equations for 51 and cS are not written out, since they are of no further use 
to us. From (2.18) we obtain the following auxilliary equations for w: 

(2.211 

and in (2.19), (2.20) we have used the notation 

F = (a - C) (p* - p) + (b - a) (q* - ~2) + (c - b) V-d) (2.22) 

Solutions of the averaged system approximate the slow variables with an error of the 
order of E over the time interval of the order of e-r. It can be shown that the averaged 
system has the following integrals: 

cm= cons& ?&o = const (2.23) 

The second of these integrals means that the projection of the instantaneous velocity vector 
on the vertical is constant inthefirst approximation. Since the general solution of the 
averaged system is hardly possible, we shall limit ourselves to finding its particular solu- 
tions and establishing certain general properties of the motion of the ellipsoid. 

3. First we establish some geometrical properties of the motion. Let us carry out in 
(2.18) the variable change according to the formulas 

P = mxr q = my, r = or+ 
(3.1) 

where ax, abrr a, are the cosines of the angles between the vector o and the axes Cz,Ck, Cs 
of the ellipsoid respectively. From (2.18) and (2.21) we obtain 
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Aa, + 0 [i + 5g (3p - 1)/(20*01 (C - B) avaz = 0 

{ABC, ZYZ) 

.!.J 

It follows that in the first approximation the quantities ox, al, aZ describing the orienta- 
tion of the vector 8) relative to the ellipsoid can be found using the formulas used in deter- 
mining the quantities p,Q,r in the Euler- Poinsot motion in which the part of time is played 
by 

.3.3! 

Let the CCXtIponents of the vector G in the fixed coordinate system be Gs, GY, Gz. The 
theorem on the change of kinetic momentum yields for these components the following equations: 

Gx’ = allJf= + u,*M, + u~BM~ {XYZ, ali, a,,ia,i (i = 1, 2, 3)) (3.4) 

All components Gx, GY, G, are slow variables. Using (3.4) we obtain a differential equation 
for G, and averaging its right-hand side yields the following first approximation equation: 

G’ = fmgla, :3.5! 

Averaging the right-hand side of the expression for thederivativeof the kinetic energy of 
motion relative tothe center of gravity, yields the following first approximation equation: 

T” = fmgl wx? (3.Gi 

Connecting mentally the ellipsoid in question with its inertia ellipsoid relative to the 
center of gravity, passing through the center of gravity a straight iine parallel to the 
vector o and projecting through the point of intersection of this line with the inertia el- 
lipsoid a plane tangent to this ellipsoid we find, just as in the Euler- Poinsot case, that 
the plane will be perpendicular to the vector G and will lie at the distance d = mG’ from 
the center of the ellipsoid. In the Euler-Poinsot case T and G are constant, hence so is (/, 
while in the present case T and G both vary with time. However, the calculations employing 
(3.5) and (3.6) and the closeness of the moments of inertia (2.4) shown that d'= 0 with the 
accuracy of up to the terms of order e inclusive. Therefore we find that in the presentcase, 
just as in the Euler-Poinsot case, the inertia ellipsoid rolls and rotates without slippage 
over the tangent plane constructed, the latter remaining at a distance from the center of 
the ellipsoid, unchanged in the first approximation. In the present case however, the center 
of the ellipsoid moves in accordance with the equations (2.17) and the orientation of the 
vector C; varies relative to the fixed GXyz coordinate system. 

bet us obtain the equations determining the orientation of the vector G. Computing the 
right-hand side of the third equation of (3.4) using (l-3), (2.1), (2.3) and (2.5) shows that 
it is equal to zero with the accuracy of up to the terms of order I? inclusive. This implies 
that the projection Gr of the kinetic moment vector on the vertical is constant in the first 
approximation. Let u be the angle between the OX axis and the projection of G on the hori- 
zontal plane. We see that 

lJ'= 
CXCY'-GYGX' (3.7) 

(;' - (; r' 

Replacing here Gr'and Gr'by the right-hand sides of the corresponding equations of (3.4) and 

averaging, we obtain the following first approximation equation: 

(3.8) 

4. We know that a rapidly spinning symmetrical top placed on a rough horizontal plane 
develops a tendency to raise its center of gravity and tends to rotate about its vertical 
symmetry axis. It appears that the first correct explanation of the phenomenon was given in 
/0/ where the discussion was carried out from the almost modern positions /g-11/. Chapter 
18 of /12/ deals with the problems of mathematical theory explaining the rise of the axis of 
a symmetric top. The axis rise effect appears also in the case when the top is not necessar- 
ily symmetrical. The author of /13/ describes an experiment carried out by Thomson with an 
ellipsoidal stone. The motion of the stone spun rapidly on a rough horizontal plane evolved 
to that the stone exhibited a tendency to rotate about its longest axis which, in turn, strove 
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to occupy a vertical position, provided that the rotation was sufficiently rapid. 
Let us now consider the tendency of the ellipsoid to rotate about its longest vertically 

situated axis. Using first the integrals (2.23) of the averaged equations of motion, we 
arrive at certain qualitative conclusions concerning the evolution of the motion of the el- 
lipsoid, not necessarily rapidly spun, but for the most general case of its motion. If its 

angular velocity 0 decreases, then the constancy of the value of the projection of the vector 
o on the vertical implies that the ellipsoid tends to assume a vertical position. Further, 
from the first integral of (2.23) it follows that when o decreases, then the quantity 15 imust 
increase. Taking into account the geometrical meaning of the variable 5, we conclude thatwhen 
0 decreases, then the ellipsoid tends to rise and stand on its longest, vertically oriented 
axis. When 0 increases, we have the opposite phenomenon, the vector o and the longest axis 

of the ellipsoid both show a tendency to increase their deviation from the vertical. 
Analysis of the consequences of the existence of the integrals (2.23) is insufficientto 

obtain quantitative results regarding the evolution of the motion of the ellipsoid, and the 
averaged equations themselves must be used. Let Iv, I< 10 x CP 1 when t= 0. Then the quan- 
tity op is negative and CY, small at the initial instant. We shall assume that Ial 1 is not 
less than the first order in E. Then from (2.19) we obtain the following first approxima- 
tion equation: 

o2' = 5fg(l - u,~$.i?oI (4.1) 

which forms, together with (2.211, a closed system of equations. Denoting by zero subscript 
the initial values of the variables, we obtain the general solution of this system 

(4.2) 

The quantity 0 decreases with increasing t, and a% increases from its initial negative value 

ato. It remains negative up to the time tl = 20,t /a,0 //(5fg). geometrical considerations 
imply that aBo = -pa, vo = POZWO with an error or the order of e, therefore we have approx- 
imately tl = &Qfg). When a, are small, then from the second equation of (2.20) we find that 
in the first approximation , just as in the case of a sphere on a rough plane, the velocity of 
the point of contact is 

v= vo - 7U@ (4.3) 

The velocity Y becomes zero at the instant t, = ~~(7~g), and a motion without slippage com- 
mences. Since tl > t,, it follows that the angular velocity m decreases over the whole time 
interval 0< t C tp and the ellipsoid continues to rise onto its longest axis up to the on- 
set of the motion without slippage. Let us estimate the amount At of time necessary for 
the ellipsoid to turnover from its shortest semiaxis a to its longest semiaxis C. This means 
that 151 should change over the period At by the amount equal to (c-a)& From (2.23) we 
have j (t) = ~ooo/o (t). Setting here 60 = a/l, C(At) = ~11 we obtain, neglecting the termsoforder 
E? and higher, o (At) = o0 11 - (c-a)/& Substituting this value 0 into the left-hand side of 
the first equation of (4.21, we obtain 

At 2(c - 0) 
=5lglcr,loo (4.4) 

Terms neglected from the right-hand side of (4.4) are smaller than the retained terms by at 
least one order of magnitude E. In order to have the turnover continuing up to the onset of 
the motion without slippage , it is necessary to demand that the inequality At< t, holds and 
this, with the approximate relations a20 = -nor V. =pooot taken into acoount, implies that 
the following inequality must hold: 

PO > (7 (c - a)l(52) (4.5) 

Thus, in order to make possible the turnover of the ellipsoid from the shortest to the 
longest semiaxis, we must require that the angle between the smallest semiaxis and the vector 
0 be not too acute at the initial instant , otherwise the time At necessary for the turnover 
of the ellipsoid will exceed the time t, at which motion without slippage begins. This con- 
clusion can be reached in a qualitative manner directly from (2.21) and (2.23): the smaller 

po, the smaller la,, 1 and, according to (2.21) , the slower the decrease in the value of 0 
and hence, according to (2.231, the slower the increase in 16 1, 

5. Let us consider the case of perfectly smooth plane. 
s; = co!Wt. I-=- = const. 

From (1.8) with f= 0 we obtain 

proximation with 
Third equation of (2.20) and (2.21) together imply that in the first ap- 

f = 0. do not decrease the accuracy, 
brackets of (2.18). 

we can write E= t,o= o0 in thesquare 
Already in the first approximation the ellipsoid executes an Euler- 

Poinsot motion about the vector c;, in which the following quantity is regarded as time: 



266 

r = 11 T 5g (3t* - 1) ; (20,V)j 1 

and depends on the initial condititions. 

t5.1, 

From the constancy of Gr and the fact that according to (3.5) the quantity c is constant 
at f = 0 also inthe first approximation, it follows that the angle between the vector G and 
the vertical is also constant in the first approximation. The function (2.22) can be written 
with the accuracy of the order of t?, in the form 

)‘ = 5 [(A + B + C) 0' - 6Tjl(tml) 
When f= 0 we find, from (3.6), that we can, without affecting the accuracy, write in the right- 
hand side of (3.8) not only o - o0 = const. but aleo F = F. = const. Remembering also that the 
projection of G on the horizontal plane is equal to ‘~~mFp,o,, with the accuracy of the order of 
e , we find fran (3.8) that when 1=0, the quantity 0' is constant in the first approxiaa- 

tion and given by the formula 

0' = -5gtFJ(21'o,S) !5.2) 

Thus we find that when f -0, the projection of the center of gravity of the ellipsoid 
on the horizontal plane is uniform and rectilinear, and the ellipsoid itself moves about the 
kinetic moment vector in accordance with Euler- Poinsot with an altered time scale (5.1) ,while 
the kinematic moment vector is constant in modulo and precesses slowly about the vertical at 
a constant angular velocity (5.2), remaining at a constant angular distance from it. The same 
result was obtained by a different method in /2/. 

6. We shall indicate some simplest particular solutions of the averaged system (2.17)- 
(2.20). First we consider a solution in which c= O- This corresponds to a motion of the 
ellipsoid in which we can assume, with an error of the order of e, that its centerofgravity 
lies in the plane perpendicular too and passing through the point of contact between the 
ellipsoid and the plane. When c=O, the third equation of (2.20) is satisfied identically, 
while (2.17) and the first two equations of (2.20) together imply that , as in the case when a 
sphere moves with slippage on a rough plane, 8 = 6, - const,v = v,, -'/jgt and the projection of 
the center of gravity on the plane moves either along a straight line, or along a parabola, 
depending on the intial conditions, When 5 = 0, the equations (2.18) and (2.19) can be writ- 
ten as 

Ap' + (4 - 5g/(20*0) (C - B) qr = fmg&~plw {ABC, pyr) (6.1) 

a 1' = -5fga,a,/(2ol), a*' = 5/g (1 - a,")/(204 (6.2) 

From (2.21) and (6.2) we find thato and al vary with time according to (Q-2), while 

aI = a,,o,/o. The orientation of the instantaneous angular velocity vector is given in the 
c)_yyz coordinate system by equations 

The quantities fJ,Q* and r (with the relation o(t) known) are obtained from (3.1) and equations 
(3.21, which can be reduced with help of the independent variable 

T = s OI (1 - 5g/(h*I)) dt 
0 

to a system in the Euler-Poinsot problem, integrable in 

7. It can be confirmed that the averaged system of _ . . 

terms of elliptical functions. 

equations admits a solution forwhich 

p = 0, q = 0 and the quantities X,', .Y,', al. a,, 0, V, 5, i~, 0 = 1 r 1 satisfy the system of equa- 

tions(2.17), (2.19)-(2.21) in which the quantity Flu* is replaced by the constant 2c- a -b. This 

particular solution corresponds to a motion in which the vector o remains parallel to one of 
the axes of the ellipsoid throughout the motion. If the semiaxes of the ellipsoid are connect- 

ed by the relation a + b = 2c, then 8 = e. = CouSt. the projection of the center of gravity 

on the plane moves along a straight line or a parabola, and the quantities al, %v, o change 

with time just as in Sect.6 where 5 = 0. 

8. We shall indicate another interesting particular solution of the averaged system 

corresponding to the motion of an ellipsoid with constant instantaneous angular velocityvector 
0. We obtain the solution, and conditions of its existence. From (2.18)- (2.21) we find 

that the solution in question has the following analytic expression: 

p = pO, Q = qO, r = rO, aI = /loO*/(WJ. a, = 0 (8.1) 

e = e,, t, = co, v = v. - fgt 
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projection of the center of gravity on the plane moves along a straight line or a parabola. 
constants ?&, o0 in (8.11 are connected by a relation which causes the expression within 
square brackets in (2.18) to vanish 

co* = I/* - Zo,%%%) (8.21 

Requiring now that the right-hand side of (8.2) be positive and taking into account the fact 
that i%I<i, we obtain the upper bound for the angular velocity o,, and the coefficient 
of frictionf 

(8.31 

The inequalities (8.3) represent the conditions of existence of the motion with constantvec- 
tor 0. We note that in the case of a'sphere with t+O, there exists no motion with slip- 

page at constant 0 0 

9. A motion of the ellipsoid was also studied under the assumption that the ellipsoid 
is again almost spherical and the friction is low, though not dry but viscous. We shall form- 
ulate briefly the fundamental results of investigation, 

The reaction of the plane will now be given in the OXYZ coordinate system by the 
components - kmvcos8, - kmv sin 6,Rz where k>O is a constant and small (of the order of E) 
coefficient of friction. The averaged equations of motion are obtained from the equations 
(2.17)- (2.21.1, provided that we replace in their right-hand sides terms containing the fact- 
or fg, by the same terms but containing the factor kv. The geometrical characteristics of 
the motion discussed in Sect.3 also apply in the case of viscous friction, but the coefficient 
fg in the right-hand sides of (3.5) and (3.81 must be replaced by kv. The integrals (2.23) 

hold for the averaged equations just as in the case of dry friction, and as before there is a 
tendency of the ellipsoid to rotate about its largest, vertically positioned axis. Only, in 
the case of viscous friction the quantity z in (4.21 must be determined by the equation 

while the formula (4.3) describing the decrease in the velocity of the 
small 1 a,j , becomes 

s = ~,e”P 

Since v does not vanish at any t, it follows that we cannot have 

page, The estimation of "time" Ar, necessary for the turnover of the 
smallest to the largest axis will, in the case of viscous friction, be 

AT = (c - a) ~~(~~~) 

(9.1) 

point of contact at 

(9.2) 

a motion without slip- 
ellipsoid from the 

(9.3) 

The above quantity must not exceed the largest possible value of r equal to 5v, 474 I andfrom 
this, just as during the dry friction, follows the condition (4.5) D The averaged equation 
admists the particular solution discussed in Sect.6 in which 6 = 0. The variables al, a,, 0 
in this solution are obtained from the Same formulas as in the case of dry friction, but with 
z given by equality (9.1). 
6 = Bc = const 

The velocity of the point of contact is given by (9.2) I the*angle 
and the trajectory of the projection of the center of gravity on the plane are 

given by 
x,(t) = 4 ~~oOOseo(i -e -'kf/!q+ (X,6- -$- VoeoseO)t +. xc, 

ye (t) - --&vDsineO(l -e-7k~/2)+~~*.-ivosin6.jt+Y, 
(9.4) 

Another particular solution exists, for which the vector o is parallel to one of the 
axes of the ellipsoid. In t!he case of viscous friction the motion with constant vector o dis- 
cussed in Sect.8 does not exist. 
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